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Abstract
Electron spin transport through an Aharonov–Bohm ring driven by time-
dependent inhomogeneous magnetic fields is treated. The system possesses
an su(2)l × su(2)s dynamical symmetry in both orbital angular momentum
space and spin space, and is thus proved to be integrable according to algebraic
dynamics. Based on the analytical solutions, the relevant physical quantities
such as electric current, spin current, magnetization and conductance are
calculated. It is found that for a magnetic field with π/2 twist angle, the
direction of spin-polarization will be reversed at zero magnetic flux. In the
resonant rotating magnetic field, the spin transmission is oscillating with time t ,
and can reach unity, so that a complete spin flip can also be induced. The results
obtained may be of practical significance for the design of nano-electromagnetic
spin devices, such as a spin switch, in a controllable way.

1. Introduction

Much attention has been focused on spin related transport through a mesoscopic ring in the
presence of an inhomogeneous magnetic field. For such a system, two problems are of great
interest. One is the geometric phase. When a system evolves through an arbitrary path
in its parameter space, the physical state acquires a memory of its motion in the form of
dynamical phases and geometric phase, including the cyclic geometric phase [1] and its non-
cyclic generalization [2]. The geometric phase of the wavefunction is a fascinating consequence
of quantum mechanics and leads to various interference phenomena which are experimentally
observable [3]. In recent experiments [4, 5], Yau et al observed evidence of a Berry phase
acquired by a carrier of spin as it travels around a ring. On the other hand, due to the potential
applications for quantum computing and spintronics, another interesting problem, which is the
control of spin degree of freedom at the mesoscopic scale, has become the centre of attention.
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Figure 1. Overview of a mesoscopic ring system. The ring (thick circle) is embedded in an
inhomogeneous time-dependent magnetic field (arrows) with tilt angle β(θ) and twist angle χ(θ).

Frustaglia et al [6] studied a ballistic ring subject to an inhomogeneous circular (in-plane)
magnetic field, and showed that the polarization direction of the transmitted spin-polarized
electrons can be controlled via an additional perpendicular magnetic field such that spin flips
are induced at half a flux quantum. Thus this system can be made as a device of spin switch
and opens up the possibility of many proposed future applications, e.g., spin transistors [7],
filters [8], and scalable devices for quantum information processing [9]. However, up to now,
theoretical analysis [10–15] has been based on static magnetic fields and the corresponding
results are deduced from autonomous systems, and, moreover, realistic experiments are carried
out in time-dependence magnetic fields and the system becomes non-autonomous. The purpose
of this paper is to treat this kind of non-autonomous quantum system and to study quantum
transport of electrons in a mesoscopic ring embedded in a time-dependent inhomogeneous
magnetic field. After the exact analytical solution of the system has been obtained by using an
algebraic dynamical method [16], the properties of the system are calculated. We found that,
by proper control of a rotating magnetic field, the spin flip can be manipulated at one’s disposal.
This gives us the possibility of designing nano-electromagnetic spin devices controlled by a
time-dependent magnetic field.

2. Non-autonomous dynamics of a mesoscopic ring in time-dependent magnetic fields in
general

Let us consider non-interacting electrons with effective mass m confined to a ring of radius
a. The ring is embedded in a time-dependent inhomogeneous magnetic field B(t) =
Br (t)êr + Bθ (t)êθ + Bz(t)êz , as depicted in figure 1. In cylindrical coordinates, the Hamiltonian
for this system is taken to be,

Ĥ (t) = 1

2ma2
[P̂θ − eaAθ(t)/c]2 + µB(t) · σ̂, (1)

where P̂θ is the angular momentum operator conjugate to the coordinate θ , h̄σ̂i/2 (with
i = r, θ, z) are the spin operators that satisfy [σ̂i , σ̂ j ] = 2iεi jk σ̂k , and µ is the magnetic
moment. For the inhomogeneous textured magnetic field B(t) = ∇ × A(t), the Zeeman
term µB(t) · σ̂ couples the spin and orbital degrees of freedom and an effective spin–orbital
coupling is thus resulted [11]. Assume that the in-plane magnetic field components Br (t)
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and Bθ (t) are all θ -independent but time-dependent, the system then possesses the cylindrical
symmetry which leads to the conservation of total angular momentum Ĵz = P̂θ + h̄

2 σ̂z , namely

[ Ĵz, Ĥ ] = 0. This makes us work in an invariant subspace labelled by a certain eigenvalue
jz of Ĵz . In such an invariant subspace, the non-autonomous Hamiltonian becomes a linear
function of the σ̂i ,

Ĥ (t) = h̄ω0

2
[ jz − φ(t)]2 +

h̄ω0

8
+

h̄

2
[ωr (t)σ̂r + ωθ(t)σ̂θ + ω′

z(t)σ̂z], (2)

where φ(t) is the enclosed magnetic flux in the unit of the flux quantum, and

ω0 = h̄

ma2
, ωr (t) = 2µBr(t)

h̄
, ωθ (t) = 2µBθ (t)

h̄
,

ω′
z(t) = 2µBz(t)

h̄
− ω0[ jz − φ(t)].

(3)

One can see, comparing with other two components of the Larmor frequency ωr and ωθ , ω′
z(t)

has been modified by the effective spin–orbital coupling. To solve the Schrödinger equation
ih̄ ∂

∂ t |
(t)〉 = Ĥ(t)|
(t)〉, let us perform a gauge transformation [16],

Ĥ → Ĥ = U−1
g ĤUg − ih̄U−1

g ∂Ug/∂ t, (4a)

|
(t)〉 → |
(t)〉 = U−1
g |
(t)〉, (4b)

Ug(t) = exp[ivz(t)σ̂z] exp[ivr (t)σ̂r ] (4c)

where the parameters vz(t) and vr (t) have definite physical meanings (see below). If the
transformation parameters vr (t) and vz(t) are chosen in such a way that

ωr cos 2vz − ωθ sin 2vz + 2v̇r = 0, (5a)

ωr cos 2vr sin 2vz + ωθ cos 2vr cos 2vz − ω′
z sin 2vr − 2v̇z sin 2vr = 0, (5b)

one has a special gauge transformation which diagonalizes the gauged Hamiltonian in the σ̂z

representation,

Ĥ = h̄ω0

2
[ jz − φ(t)]2 +

h̄ω0

8
+

h̄

2

ωr sin 2vz(t) + ωθ cos 2vz(t)

sin 2vr (t)
σ̂z . (6)

Now the time-dependent dynamical symmetry of the Hamiltonian Ĥ(t) has been converted

into the stationary symmetry of the gauged Hamiltonian Ĥ by virtue of a proper choice of the
gauge. Let |m〉 be the eigenstate of σ̂z with eigenvalue m(= ±1), the solution to the gauged

Schrödinger equation ih̄ ∂
∂ t |
(t)〉 = Ĥ |
(t)〉 can be written down explicitly as

|
n,m(θ, t)〉 = e−i�n,m(t)einθ |m〉, (7)

with �n,m(t) = ∫ t
0 En,m(t ′) dt ′ and En,m(t) = h̄ω0

2 [(n − φ)2 + m( jz − φ)] +
mh̄
2

ωr sin 2vz (t)+ωθ cos 2vz (t)
sin 2vr (t)

. Here n = jz − m
2 is the eigenvalue of the angular momentum operator

l̂z and is an integer number. Based on the gauge transformation (4), the solution to the original
Schrödinger equation reads

|
n,m(θ, t)〉 = e−i�n,m(t)einθ
∑
m′

D1/2
m′m(vr )eim′vz |m ′〉, (8)

where D1/2
m′m(vr ) is like the Wigner function defined as:

D1/2(vr ) =
[

cos vr (t) i sin vr (t)e−iθ

i sin vr (t)eiθ cos vr (t)

]
. (9)
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It is obviously that the bases |
n,m(θ, t)〉 in each subspace labelled by jz with different m
are orthogonal. Furthermore, because jz is a good quantum number and {νr (t), νz(t)} are
dependent on the quantum jz , it can be proved that |
n,m(θ, t)〉 are also orthogonal for different
jz . Therefore the bases |
n,m(θ, t)〉 are complete and orthogonal in the whole Hilbert space.
The general wavefunction of the system can thus be expanded in terms of them,

|
(θ, t)〉 =
∑
n,m

Cn,m|
n,m(θ, t)〉 =
∑

n,m,m′
Cn,me−i�n,m(t)einθ D1/2

m′m(vr )e
im′vz |m ′〉. (10)

Cn,m are time-independent expansion coefficients and completely determined by the initial
condition. It is noted that when the magnetic field becomes static, this basis (8) is reduced to
the result discussed in the previous paper [11, 12, 14].

Because the magnetic field is time-dependent, the energy of the non-autonomous system
is not conserved,

En,m(t) = 〈
n,m(t)|Ĥ |
n,m(t)〉 = En,m(t) − mh̄v̇z cos 2vr

= h̄ω0

2
(n − φ)2 +

mh̄ω0

2

(
n +

m

2
− φ

)
(1 − cos 2vr )

+
mµh̄

2
[sin 2vr (Br sin 2vz + Bθ cos 2vz) + Bz cos 2vr ]. (11)

Here we can easily identify the first term as being the kinetic energy, the second term being
the spin–orbit energy, and the last term being the Zeeman energy, respectively. Moreover, by
using the basis |
n,m(θ, t)〉, we can study other observable physical quantities of the system,
such as the charge current 〈 Ĵ 0〉 and the spin current vector 〈Ĵ〉 [11],

〈 Ĵ 0
n,m〉 = n − eAθ/h̄c + m[1 − cos 2vr ]/2, (12)

〈 Ĵ z
n,m〉 = m cos 2vr [n − eAθ/h̄c + m(1 − cos 2vr )/2] − sin2 vr/2. (13)

with the other components 〈 Ĵ x
n,m〉 and 〈 Ĵ y

n,m〉 vanishing. Similarly, the magnetization vector
h̄〈σ̂ 〉/2 is given by

〈σ̂ r
n,m〉 = m sin 2vr (t) sin 2vz(t), (14a)

〈σ̂ θ
n,m〉 = m sin 2vr (t) cos 2vz(t), (14b)

〈σ̂ z
n,m〉 = m cos 2vr (t). (14c)

The above equations indicate that the parameter vr (t) describes the deviation of the spin
from the z-axis and vz(t) describes the spin rotation around the z-axis. From the expression
〈 Ĵ z

n,m〉 = 〈 Ĵ 0
n,m〉〈σ̂ z

n,m〉− sin2 vr
2 , one can see that the term − sin2 vr

2 represents the coupling between

σ̂ z and P̂θ −eAθ/c, reflecting the quantum-mechanical correlation between the orbital angular
momentum and spin, which is induced by the geometry of the inhomogeneous magnetic field.

Up to now, we have presented the exact solution of the non-autonomous mesoscopic ring
system whose Hamiltonian is a function of su(2)l × su(2)s generators. This solution is quite
general for any time-dependent magnetic field B(t). From the equations (5) with the initial
conditions vr(0) and vz(0), the parameters vr(t) and vz(t) can be obtained, and all the properties
of the 1D mesoscopic ring system can be calculated and in turn can be controlled by a proper
setting up of the magnetic field B(t).

3. Special cases: a ring embedded in a rotating magnetic field

A simple and useful case is a magnetic field rotating around a z-axial at a fixed tilt angle and
constant frequency,
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Br (t) = Bp sin(2ωt + α), (15a)

Bθ (t) = Bp cos(2ωt + α), (15b)

Bz(t) = Bz, (15c)

where χ = π
2 −α is the twist angle of the initial magnetic field. Intuitively, the spin will follow

along with the rotating magnetic field, thus we can formally write down vz(t) = ωt + ε(t)/2.
Introducing this expression into equations (5), one has

2v̇r (t) + ωp sin(α + ε(t)) = 0, (16a)

−ε̇(t) sin 2vr − (ω′
z + 2ω) sin 2vr + ωp cos 2vr cos(α + ε(t)) = 0. (16b)

Due to the non-linearity of the above equations, it is generally difficult to obtain their analytical
solutions. However, the numerical solution is feasible. Here we consider two limit cases:
α ∼ 0 and α ∼ π/2. In the limit α ∼ 0, the initial configuration of the magnetic field is the
same as that studied in [6, 12]; one can readily obtain the solutions of vr (t) and vz(t),

vz(t) = ωt, tan vr = ωp

ω′
z + 2ω

. (17)

This shows that within the ring the electron travels with different spin tilt angle for distinct
available Feynman paths labelled by jz. With an increase of the rotating frequency ω, the spin
tilt angle 2vr decreases. When the magnetic field undergoes a periodic variation in the time
interval [0, π/ω], the system returns to its initial state except for acquiring the total phase [17],
� = −�nm(π/ω) + π , in which the non-adiabatic geometric phase, the Aharonov–Anandan
phase, is �AA = π(1 − m cos 2vr ). In the limit of strong spin–orbit coupling, the so-called
adiabatic limit, the spin alignment follows the instant direction of the magnetic field, and
vr → β where β = arctan Bp/Bz is the tilt angle between the magnetic field B and the z-axis,
the AA phase reduces to the adiabatic Berry phase �B = π(1 − m cos β), and all carriers
propagate with the same spin tilt angle β in the ring.

In the limit α ∼ π/2, equations (16) deduce a resonant solution,

vz(t) = ωt = ω′
z t/2, vr (t) = ωpt/2. (18)

In such a resonant configuration, the spin makes a spiral motion along the ring. After vr (t)
evolves from 0 to π/2, electron completely reverses its spin direction, which implies that such a
resonant magnetic field can be controlled to produce some nano-electro-magnetic spin devices,
e.g., a spin switch. On the other hand, contrary to the case of α ∼ 0, after a cyclic evolution
of the magnetic field and the Hamiltonian in the time interval [0, π/ω], the wavefunction
|
n,m(θ, t)〉, however, takes a non-cyclic evolution. Following the definition of the non-cyclic
geometric phase in [2], one obtains the non-cyclic geometric phase as follows,

�g(t) = −mω′
zt + m

ω′
z

ωp
sin ωpt, (19)

which is similar to the result of Wagh and Rakhecha [18]. Using a polarized neutron beam,
they determined this phase as well as interference amplitudes for non-cyclic spinor evolutions
in a magnetic field.

4. Quantum transport of electrons through the ring

Now consider a ring coupled to two equivalent current leads. In this case, the ring is no
longer closed, the leads break the rotational symmetry, and Ĵz is not conserved. The electrons
propagating in the leads traverse the ring in both clockwise and counter-clockwise directions
and the resulting transmission probability is determined by an interference. In the following,
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we shall focus our attention on the ballistic motion of electrons in the ring at the strong coupling
limit [19]. We assume the two leads support only one open channel. At zero temperature, the
spin-dependent conductance of such a mesoscopic system is given by the Landauer formula:

G = e2

h

∑
s,s ′

Ts ′s = e2

2h

∑
s,s ′

∣∣∣∣
∑

i

Ai
s ′s

∣∣∣∣
2

. (20)

The coefficients Ai
s ′s denote the probability amplitude of the i th Feynman path from an

incoming quantum channel with spin s to an outgoing channel with spin s′. Considering
an incident electron with energy EF and spin s in the right conductor. Depending on the spin
alignment (m) and the direction of angular momentum (λ), the initial electronic state in the
ring is a superposition of the four wavefunctions |
nλ

m ,m(0, 0)〉, where the quantities nλ
m are

determined by the equation EF = En,m(0) in equation (11). In general, the energy of the
incident electron, EF, does not exactly coincide with the diabatic eigen energy in a closed
ring. Therefore, there are four approximate integer solutions nλ

m , which are positive n+
+ and

negative n−
+ with m = +1, and positive n+− and negative n−

− with m = −1, corresponding to
four diabatic eigen wavefunctions.

As an incoming electron with arbitrary spin state |s〉 = C↑|↑〉 + C↓|↓〉 (
∑

m C2
m = 1)

enters the ring from the right lead, its initial spin state in the ring is |
nλ
m ,m(0, 0)〉 =∑

m′ Cm D1/2
m′m[vr

λ,m(0), 0]|m ′〉. After time τ , the electron has propagated to the left lead along
the four available Feynman paths, and corresponding wavefunctions are

|
nλ
m ,m(π, τ )〉 =

∑
m′

Cme−i�nλ
m ,m (τ )eiλnλ

mπ D1/2
m′m(vr

λ,m(τ ))eim′vz
λ,m (τ )|m ′〉. (21)

These four waves interfere at θ = π , and the transmission Tκs(τ ) (κ = ↑,↓) is given as
Tκs(τ ) = 1

2 | ∑λ,m〈κ |
nλ
m ,m(π, τ )〉|2. In the resonant magnetic field (α ∼ π/2) or in the

adiabatic limit for the case α ∼ 0, the four Feynman paths have the same spin tilt angle,
vr

λ,m(t) → vr (t) = ωpt/2 or vr
λ,m(t) → vr (t) = β, respectively. And the transmissions are

simple:

T↑s(τ ) = C2
↑ cos2 vr (τ )[1 + cos(�φn+↑−n−

↑ )] + C2
↓ sin2 vr (τ )[1 + cos(�φn+↓−n−

↓ )], (22a)

T↓s(τ ) = C2
↑ sin2 vr (τ )[1 + cos(�φn+

↑−n−
↑ )] + C2

↓ cos2 vr (τ )[1 + cos(�φn+
↓−n−

↓ )], (22b)

where �φ is the phase difference contributed from the distinct interference Feynman path in
the mesoscopic ring due to quantum coherence. By imposing equation EF = En,m(0) and after
half an evolution, the phase difference between two spin waves with the same m travelling in
opposite angular momentum direction can be calculated as,

�φn+
m−n−

m
= −2πφ − mπ[1 − cos 2vr (0)].

One can identify the phase −2πφ as being the Aharonov–Bohm (AB) phase, and −mπ[1 −
cos 2vr (0)] as being the Berry phase. It should be pointed out that, due to the spin precession
in the time-dependent magnetic field, generally, the initial spin wave with opposite m and
travelling in the same direction are not orthogonal, which is different from the result of Nitta
et al [15].

For incoming spin-unpolarized currents, after summation over the spin indices κ and s,
the total spin-dependent conductance of the mesoscopic system is,

G = e2

h
[1 + cos 2πφ cos π(1 − cos 2vr (0))], (23)

which exhibits Aharonov–Bohm oscillations with a period of φ0 = hc/e [20]. However,
because of the spin freedom, there is an additional initial phase contribution φ = π(1 −
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Figure 2. The total spin-dependent conductance for z-polarized electrons through a mesoscopic
ring embedded in a rectangularly oscillating perpendicular magnetic field Bz(t) (inset, φ =
Bz(t)πa2) with period T . Such a system acts as a ideal diode.

cos 2vr (0)). If the initial spin state is z-polarized, i.e. vr (0) = 0 or π/2, which can be
satisfied in the two above mentioned magnetic fields, the conductance becomes zero, G = 0,
at φ = φ0/2. Under such conditions, the mesoscopic system is a ideal insulator. In other words,
a mesoscopic ring embedded in a rectangularly oscillating perpendicular magnetic field Bz(t)
can be used as a diode (figure 2).

In the work of Frustaglia et al [6], they found that the polarization direction of initially
polarized and transmitted electrons can be reversed at half a flux quantum. Motivated by
their work, let us study the magnetoconductance of incoming spin-up polarized carriers,
|s〉 = |↑〉 (equivalent results are obtained for spin-down incoming states). Firstly, we discuss
the possibility of controlling spin polarization in the case of the magnetic field with zero α

angle. From the discussion of the above section, we know that strong spin–orbit coupling (the
adiabatic limit) leads to four available Feynman paths which have the same spin tilt angle,
vr = β. In the ‘weak’ magnetic field limit Bz → 0, Bp/Bz → ∞ and β = π/2, cos vr

goes to zero. In equations (22), we found that the transmission becomes: T↑↑ → 0 and
T↓↑ → 1 (see in figure 3(a)). Hence, for zero flux, the transmitted carriers precisely reverse
their spin-polarization and the ring acts as tunable spin-switches. This means that the spin
flip can be realized experimentally as the ring only subject to an ‘in-plane’ magnetic field
(Bz = 0), which is believed to be realistic. On the other hand, for the resonant magnetic field,
because vr (t) = ωpt/2, the transmission is oscillating with time t . We know that, for a 1D
ring of radius a, the adiabatic separation of timescales implies that the Larmor frequency of
spin precession, ωs = 2µ|B|/h̄, must be larger compared to the frequency ωF = vF/a of
orbital motion with the Fermi velocity vF around the ring [6, 12], i.e. ωs/ωF 	 1. In a weak
magnetic field Bz ≈ 0, we have ωpτ/π 	 1. So, modulating the magnetic field Bp such that
the time τ of electrons through the ring satisfies the condition: ωpτ/2 = kπ + π

2 (it is possible
since ωpτ/π 	 1), the transmission T↑↑ vanishes and only the T↓↑ is left, and spin flip is also
induced (see also figure 3(b)). Thus, the condition for spin flip in the resonant magnetic field
again amounts to the ‘weak’ magnetic field limit. Hence, such a mesoscopic system can be
used as a controller of spin current.



2050 C-L Jia et al

Figure 3. Conductance of spin-up polarized incoming carriers through a ring embedded in different
initial configuration magnetic fields: (a) for the case of α ∼ 0, the spin-resolved conductance as
a function of the ratio Bz/Bp; (b) for the resonant magnetic field (α ∼ π/2), the conductance
oscillates with the spin tilt angle vr (τ ) at the left junction. Note the spin switching in the ‘weak’
Bz limit and at vr (τ ) = π/2.

From the above investigation,we found that all the above phenomena, the spin flip, the spin
current and the conductance of electron transport, etc, are intimately related to the coherence
and interference of different Feynman paths. And the latter, the coherence and interference
of the wavefunctions for different paths, in turn depend on the total phases acquired during
their time evolution through the ring. The total phase of each wavefunction consists of three
parts: the dynamical phase due to the dynamical evolution (the energy) of the wavefunction,
the Aharonov–Bohm phase due to the effect of the magnetic flux, and the geometric phase due
to the time variation of the parameters of the Hamiltonian. All the phases are controlled by
the parameters (the time-dependent magnetic fields) of the Hamiltonian and they are different
functions of the parameters. By a proper choice of the time-dependent magnetic fields, the
desired phenomenon can be achieved.

So far we discussed the mesoscopic ring where the leads open only one channel. From
expressions (22), we notice that the transmission is determined by two parameters, the spin
tilt angle 2vr and the phase difference �φ contributed from the different Feynman paths.
However, in the ‘weak’ magnetic field limit, the spin tilt angle vr

λ,m is the same for available
Feynman paths and the phase difference of the spin waves is the sum of the AB phase and
the geometric (Berry) phase. Thus, the current modulation is reasonable even after averaging
over energy between the first and the second open channel [6]. Furthermore, as discussion
in [15], usually electron quantum interference devices have to be a single mode in order to
obtain large modulation, because of the different phase shift which smears the interference
effect. For multiple channels, modification of the above formulas is in order:

(1) the Landauer formulas for conductance should be generalized to the case of multiple
channels as done in [21],

(2) the Hamiltonian of the system should be modified to include the effect of the extra leads
(channels) (such as bias potentials of each leads along the circle), and

(3) the solutions of the Schrödinger equation should be obtained under the new boundary
condition set by the extra leads.
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All the above modifications constitute a complicated issue which should be investigated
in future.

5. Conclusion and discussion

In conclusion, in the framework of algebraic dynamics, an Aharonov–Bohm ring embedded
in a time-dependent inhomogeneous magnetic field has been investigated. We found that
this non-autonomous quantum system possesses an su(2)l × su(2)s dynamical symmetry
and is thus integrable. Employing the exact solutions, the electric current, spin current,
magnetization and quantum transport driven by time-dependent magnetic fields have been
calculated explicitly. For the periodically time-dependent magnetic field, the non-adiabatic
cyclic and non-cyclic geometric phase are also computed. The most interesting results are
obtained in the ‘weak’ magnetic field limit and the spin-orientation of the polarized carriers
can be completely reversed. The obtained results may be of practical significance for the
design of nano-electromagnetic spin devices in a controllable way, such as a spin switch and
filter, scalable devices for quantum information processing, and so on.
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